Secretaria de Pesquisa e Planejamento Urbano - SEPUR Rua Quinze de Novembro, 485 - Centro 89201-601 - Joinville/SC

Processo: Condomínio Farias – Ampliação de Galpões

Protocolo: 34067/2022

Endereço do empreendimento: Rua Dona Francisca, nº 7.796, Zona

Industrial Norte

Interessado: Farias Administradora de bens LTDA

Assunto: Estudo de Impacto de Vizinhança - Solicitação de complementação

Resposta do OFÍCIO SEI Nº 0016731016/2023 - SEPUR.UPL.AIU

- 1) Em relação a contagem de tráfego, complementar com:
- 1.1) Mapa com os pontos de contagens de tráfego;

Resposta: Anexo1

1.2) Apresentar contagem de tráfego em 2 dias distintos de meios de transporte motorizados e não motorizados, nos seguintes horários 7h00 às 9h00, 11h00 às 13h00 e das 17h00 às 19h00. Reforçando que o levantamento deverá ser realizado em dia útil típico, em horário de pico e evitando o período de férias escolares;

Resposta:

Data	Horário	Automóveis	Ônibus	Motocicletas	Bicicletas	Vans	Caminhões
01/09/2023	7:00-	3.017	59	414	57	38	319
	9:00						
01/09/2023	11:00	1.487	63	312	28	54	282
	13:00						
01/09/2023	17:00	1.586	248	1.155	183	243	366
	19:00						
04/09/2023	7:00-	2.567	56	552	63	43	274
	9:00						
04/09/2023	11:00	1.719	67	255	35	65	225
	13:00						
04/09/2023	17:00	1.416	185	1.350	189	239	354
	19:00						

1.3) Nível de serviço da via atual e com a implantação do empreendimento;

Este estudo segue a metodologia do Manual de Estudos de Tráfego (DNIT, 2006), buscando compreender através da determinação da capacidade de tráfego estimar a eficiência que um determinado trecho de via possui em receber o fluxo de veículos atuais e estimar projeções para receber fluxo de veículos futuros, após implantação de empreendimentos. A capacidade é estabelecida através do volume máximo de veículos possível de transitar em determinado trecho durante um período, considerando o tráfego atual.

Os níveis possuem características específicas quanto ao fluxo, velocidade média, disponibilidade de ultrapassagem, entre outros.

Os níveis são descritos abaixo:

Nível de Serviço A: refere-se a melhor qualidade de serviço de uma via, na qual os motoristas podem trafegar na velocidade desejada. Normalmente não há regulamentação específica de velocidades menores. A oferta de locais de ultrapassagem normalmente é muito maior que a demanda por esse tipo de operação, e os motoristas não possuem atraso maior que 35% em decorrência de veículos mais lentos, devido ao melhor acesso e facilidade na ultrapassagem.

Nível de Serviço B: apresenta pequenas alterações na velocidade desejada dos condutores. A oferta e demanda por ultrapassagens começa a se aproximar e os condutores permanecem em filas por aproximadamente 50% do tempo da viagem.

Nível de Serviço C: há um aumento considerável no fluxo de veículos, entretanto ainda existe uma condição de tráfego favorável. Neste nível a demanda por ultrapassagens é maior que a oferta, e os condutores permanecem por 65% do tempo contido em filas.

Nível de Serviço D: o tráfego apresenta uma situação de instabilidade, as velocidades são reduzidas, e os locais que permitem a ultrapassagem se aproximam de zero. Os motoristas estão incluídos em filas por aproximadamente 80% do tempo.

Nível de Serviço E: o fluxo de veículos se aproxima da capacidade máxima da via, as velocidades são baixas. Neste ponto raramente existem ultrapassagens. A percentagem de tempo em fila é superior a 85%.

Nível de Serviço F: o trânsito apresenta uma característica de congestionamento completo, com a demanda superior à capacidade total da via. As velocidades são muito variáveis, incluindo momentos de parada total.

Segundo o HCM, as vias de trânsito possuem diferentes características entre si, considerando isso são apresentadas duas metodologias para o cálculo do Nível de Serviço:

Rodovias de Pista Simples: No geral são rodovias com duas faixas e dois sentidos, que possuem características de vias arteriais ou coletoras de grande importância. Vias desse tipo possuem uma capacidade de tráfego de 1.700 carros de passeio por hora (ucp/h), para cada sentido de tráfego. Esta metodologia considera ainda duas classes diferentes de rodovias, a Classe I que considera no cálculo do Nível de Serviço, a

Velocidade Média e Percentual de Tempo Seguindo, e a Classe II que considera apenas o Percentual de Tempo Seguindo.

Rodovias de Quatro ou Mais Faixas: Abordam rodovias com no mínimo quatro faixas e dois sentidos, que podem ou não ter seus sentidos divididos por barreiras físicas. É o método utilizado para a análise de rodovias duplicadas e marginais.

O trecho do empreendimento da rua Dona Francisca, possui características de rodovia de pista simples e classe II que são Rodovias nas quais os motoristas não esperam trafegar com velocidades elevadas, e funcionam como rotas de acesso às rodovias de Classe I.

As medidas que definem o nível de serviço para rodovias de pista simples são:

- Classe I: tempo gasto seguindo e velocidade média de viagem.
- Classe II: tempo gasto seguindo

Os critérios de níveis de serviço são aplicados para o pico de 15 minutos e para segmentos de extensão significativa.

São definidos seis Níveis de Serviço, de A a F:

- Nível de Serviço A: descreve a mais alta qualidade de serviço, em que os motoristas podem trafegar nas velocidades que desejam. Sem regulamentação específica de velocidades menores, as velocidades médias serão da ordem de 90 km/h para rodovias de duas faixas e dois sentidos de tráfego de Classe I. A freqüência das operações de ultrapassagem é bastante inferior à capacidade de sua execução e são raras filas de três ou mais veículos. Os motoristas não são atrasados mais que 35% de seu tempo de viagem por veículos lentos. Um fluxo total máximo de 490 ucp/h pode ser atingido em condições ideais. Em rodovias de Classe II a velocidade pode cair abaixo de 90 km/h, mas os motoristas não são atrasados mais que 40% de seu tempo de viagem por veículos lentos.
- Nível de Serviço B: caracteriza fluxos de tráfego com velocidades de 80 km/h ou pouco maiores em rodovias de Classe I em terreno plano. A demanda de ultrapassagem para manter as velocidades desejadas aproxima-se da capacidade dessa operação. Os motoristas são incluídos em filas 50% do seu tempo de viagem. Fluxos totais de 780 ucp/h podem ser atingidos em condições ideais. Em rodovias de Classe II a velocidade pode cair abaixo de 80 km/h, mas os motoristas não são atrasados mais que 55% de seu tempo de viagem por veículos lentos.
- Nível de Serviço C: representa maiores acréscimos de fluxo, resultando em mais freqüentes e extensas filas de veículos e dificuldades de ultrapassagem. A velocidade média ainda excede 70 km/h, embora a demanda de ultrapassagem exceda a capacidade da operação. O tráfego se mantém estável, mas suscetível de engarrafamentos devido a manobras de giro e a veículos mais lentos. A percentagem do tempo em filas pode atingir 65%. Um fluxo total de 1.190 ucp/h pode ser acomodado em condições ideais. Em rodovias de Classe II a velocidade pode cair abaixo de 70 km/h, mas os motoristas não são incluídos em filas mais que 70% de seu tempo de viagem.

- **Nível de Serviço D**: descreve fluxo instável. A demanda de ultrapassagem é elevada, mas a sua capacidade se aproxima de zero. Filas de 5 e 10 veículos são comuns, embora possam ser mantidas velocidades de 60 km/h em rodovias de Classe I com condições ideais. A proporção de zonas de ultrapassagem proibida perde sua importância. Manobras de giro e problemas de acessos causam ondas de choque na corrente de tráfego. Os motoristas são incluídos em filas perto de 80% de seu tempo. Um fluxo total de 1.830 ucp/h pode ser acomodado em condições ideais. Em rodovias de Classe II a velocidade pode cair abaixo de 60 km/h, mas os motoristas não são incluídos em filas mais que 85% de seu tempo de viagem.
- Nível de Serviço E: Nesse nível a percentagem de tempo em filas é maior que 80% em rodovias de Classe I, e maior que 85% em rodovias de Classe II. As velocidades podem cair abaixo de 60 km/h, mesmo em condições ideais. Para condições piores, as velocidades podem cair até 40 km/h em subidas longas. Praticamente não há manobras de ultrapassagem. O maior fluxo total é da ordem de 3.200 ucp/h. As condições de operação são instáveis e de difícil previsão.
- **Nível de Serviço F**: representa fluxo severamente congestionado, com demanda superior à capacidade. Os fluxos atingidos são inferiores à capacidade e as velocidades são muito variáveis.

Para trechos de rodovias com pelo menos 3 km de extensão são adotados os seguintes critérios para enquadramento em um dos níveis de serviço:

Tabela 1: Enquadramento em níveis de Serviços (Rodovias de Classe I)

NS	Tempo seguindo (%)	Velocidade média (km/h)	
Α	t ≤ 35	V ≥ 30	
В	35 < t < 50	80 < V <90	
C	50 < t < 65	70 < V <80	
D	65 < t < 80	60 < V< 70	
E	t ≥ 80	V ≤ 60	

NOTA: O nível F é atingido quando o fluxo excede a capacidade

Fonte; DNIT (2006)

Desta forma, em seguida é apresentada a metodologia de cálculo.

Rodovias de Pista Simples

Para rodovias de pista simples e classe II o NS é definido através do Tempo Gasto Seguindo, e classificado de A a F. Para o cálculo do Nível de Serviço é necessário seguir algumas etapas, considerando informações coletadas em campo, estimativas, dados de tabelas e cálculos.

A sequência básica para o cálculo é:

Determinação da Velocidade de Fluxo Livre (VFL), Determinação do Fluxos de Tráfego, Determinação da Velocidade Média de Viagem (VMV), Determinação da Percentagem de Tempo Gasto Seguindo (PTGS) e Determinação do Nível de Serviço.

Determinação da Velocidade de Fluxo Livre (VFL)

Quando não for possível a coleta da informação da **Velocidade de fluxo livre**, devido ao alto fluxo de veículos, este parâmetro pode ser estimado através da Equação abaixo:

$$VFL = BVFL - f_{fa} - f_A$$

Onde:

VFL = estimativa da velocidade de fluxo livre (km/h)

BVFL = valor básico da velocidade de fluxo livre (km/h)

ffa = fator de ajustamento de larguras de faixa e de acostamento

fA = fator de ajustamento para o número de acessos

Segundo o DNIT, o valor de **BVFL** pode ser obtido através de rodovias semelhantes quanto às características da infraestrutura viária, ou em função dos limites de velocidade estabelecidos pela sinalização. O fator de ajuste de larguras (ffa) pode ser obtido através da tabela 2.

Tabela 2: Ajustamento de larguras de faixa de acostamento (ffa).

Largura da Faixa (m)			or de VFL (km/h) ostamento (m)	
	≥ 0,0< 0,6	≥ 0,6 < 1,2	≥ 1,2 < 1,8	≥ 1,8
2,7 < 3,0	10,3	7,7	5,6	3,5
≥ 3,0 < 3,3	8,5	5,9	3,8	1,7
≥ 3,3 < 3,6	7,5	4,9	2,8	0,7
≥ 3,6	6,8	4,2	2,1	0,0

Fonte; DNIT (2006)

O cálculo do ajustamento devido à densidade de acessos (fA) pode ser estimado através da tabela 3

Tabela 3: Ajustamento devido à densidade de acessos (fA).

Acessos por km (ambos os lados)	Redução em VFL (km/h)
0	0,0
6	4,0
12	8,0
18	12,0
≥ 24	16,0

Fonte: DNIT, 2006

Densidade de Pontos de Acessos

Densidade de pontos de acesso é o número total de interseções e acessos do lado direito da rodovia, dividido pelo seu comprimento. A densidade deve ser calculada para um comprimento mínimo de 5 km, se houver dados disponíveis.

Determinação dos Fluxos de Tráfego

Devem ser feitos ajustamentos nos fluxos de tráfego para levar em conta três fatores: FHP (fator de hora de pico), fG (fator de greide), fVP (fator de veículos pesados), utilizando a fórmula (equação 3), abaixo:

$$V_p = \frac{V}{FHP \cdot f_G \cdot f_{VP}}$$

onde:

vp = volume horário nos 15 minutos mais carregados da hora de pico, em carros de passeio equivalentes (ucp/h)

V = volume da hora de pico em tráfego misto (veic/h)

FHP = fator de hora de pico

fG = fator de ajustamento de greide

fVP = fator de ajustamento de veículos pesados

O **fator da hora pico** pode ser calculado através da Equação (equação 4). Abaixo:

$$FHP = \frac{V_{hp}}{4 \cdot V_{15max}}$$

Onde:

Vhp = volume da hora pico

V15max = volume do período de quinze minutos com maior fluxo dentro da hora pico.

Fator de Ajustamento de Greide

O fator de ajustamento de greide fG leva em conta o efeito do terreno na determinação de velocidades e de tempo gasto seguindo. Seus valores são apresentados nas Tabela 4 e 5.

Tabela 4: Fator de ajustamento de greide paradeterminação de velocidades em rodovias de pista simples para dois e um sentido separadamente (*fG*)

Volume horário nos	Volume horário em	Tipo de terreno		
dois sentidos (ucp/h)	um sentido (ucp/h)	Plano	Ondulado	
0 – 600	0 – 300	1,0	0,71	
> 600 - 1200	> 300 - 600	1,0	0,93	
> 1200	> 600	1,0	0,99	

Fonte: DNIT (2006)

Tabela 5: Fator de ajustamento de greide para determinaçãode percentual de tempo seguindo em rodovias de pista simplespara dois e um sentido separadamente (*fG*)

Volume horário nos	Volume horário em	Tipo de terreno		
dois sentidos (ucp/h)	um sentido (ucp/h)	Plano	Ondulado	
0 – 600	0 – 300	1,0	0,77	
> 600 - 1200	> 300 - 600	1,0	0,94	
> 1200	> 600	1,0	1,00	

Fonte: DNIT (2006)

Fatores de Equivalência de Veículos Pesados

O fator de Ajustamento para Veículos pesados pode ser obtido através da Equação abaixo:

$$f_{vp} = \frac{1}{1 + P_c(E_c - 1) + P_{VR}(E_{VR} - 1)}$$

onde:

PC = proporção de caminhões e ônibus na corrente de tráfego, em decimal

PVR = proporção de veículos de recreio na corrente de tráfego, em decimal

EC = equivalente de caminhões e ônibus, em carros de passeio

EVR = equivalente de veículos de recreio, em carros de passeio

Sequência de Cálculo

Determine inicialmente o fluxo **V/FHP** em veículos por hora (**veic/h**). Em seguida retire das tabelas os valores de **fG**, **EC** ,**EVR**. Calcule vp usando as equações 3 e 4

Se o valor de v p cair dentro dos limites para os quais **fG**, **EC**, **EVR** foram obtidos, o valor calculado está certo; se não cair repita o processo usando os novos valores de **fG**, **EC**, **EVR** até cair dentro dos limites adotados.

Determinação da Velocidade Média de Viagem (VMV)

A *Velocidade Média de Viagem* é determinada pela seguinte equação (equação 5):

$$VMV = VFL - 0.0125 v_p - f_{\mu p}$$

onde:

VMV = velocidade média de viagem para ambos os sentidos (km/h)

VFL = velocidade de fluxo livre obtida das equações 10-1 ou 10-2 (km/h)

 V_p = volume horário nos 15 minutos mais carregados da hora de pico, em carros de passeio equivalentes (ucp/h)

f_{up} = fator de ajustamento para zonas de ultrapassagem proibida (Tabela 5)

Tabela 6: Fator de ajustamento para zonas de ultrapassagem proibida em rodovias de pista simples (f_{up})

Fluxo nos	Redução da velocidade média de viagem (km/h)						
V _p (ucp/h)	Zonas de ultrapassagem proibida (%)						
	0	20	40	60	80	100	
0	0,0	0,0	0,0	0,0	0,0	0,0	
200	0,0	1,0	2,3	3,8	4,2	5,6	
400	0,0	2,7	4,3	5,7	6,3	7,3	
600	0,0	2,5	3,8	4,9	5,5	6,2	
800	0,0	2,2	3,1	3,9	4,3	4,9	
100	0,0	1,8	2,5	3,2	3,6	4,2	
1200	0,0	1,3	2,0	2,6	3,0	3,4	
1400	0,0	0,9	1,4	1,9	2,3	2,7	
1600	0,0	0,9	1,3	1,7	2,1	2,4	
1800	0,0	0,8	1,1	1,6	1,8	2,1	
2000	0,0	0,8	1,0	1,4	1,6	1,8	
2200	0,0	0,8	1,0	1,4	1,5	1,7	
2400	0,0	0,8	1,0	1,3	1,5	1,7	
2600	0,0	0,8	1,0	1,3	1,4	1,6	
2800	0,0	0,8	1,0	1,2	1,3	1,4	
3000	0,0	0,8	0,9	1,1	1,1	1,3	
3200	0,0	0,8	0,9	1,0	1,0	1,1	

Fonte: DNIT (2006)

Determinação da Percentagem de Tempo Gasto Seguindo (PTGS)

Para determinar a Percentagem de Tempo Gasto Seguindo deve-se inicialmente estimar o valor básico BPTGS, a partir da fórmula (equação 7), abaixo:

$$BPTGS = 100 \left(1 - e^{-0.000879_{Vp}} \right)$$

Em seguida determina-se PTGS utilizando-se a equação (equação 6), abaixo:

$$PTGS = BPTGS + f_{d/up}$$

Onde:

BPTGS = valor básico da percentagem do tempo gasto seguindo **fd/up** = fator de ajuste para o efeito entre a distribuição do tráfego por sentido e percentagem das zonas de ultrapassagem proibida

Determinação do Nível de Serviço

Inicialmente compara-se o fluxo de tráfego (vp) em ucp/h com a capacidade de uma rodovia de pista simples de 3.200 ucp/h. Se vp é maior que a capacidade a rodovia está supersaturada e o Nível de Serviço é F. Da mesma forma, se o fluxo em um dos dois sentidos ultrapassar 1.700 ucp/h o nível de serviço é F. Nesse nível a percentagem de tempo seguindo é próxima de 100% e as velocidades são sujeitas a grandes variações e difíceis de estimar.

Caso contrário, o NS é obtido através da tabela 7, abaixo.

Tabela 7: Determinação do nível de serviço.

NS	Tempo seguindo (%)	Velocidade média (km/h)	
Α	t ≤ 35	V ≥ 30	
В	35 < t < 50	80 < V <90	
С	50 < t < 65	70 < V <80	
D	65 < t < 80	60 < V< 70	
E	t ≥ 80	V ≤ 60	

Fonte: DNIT (2006)

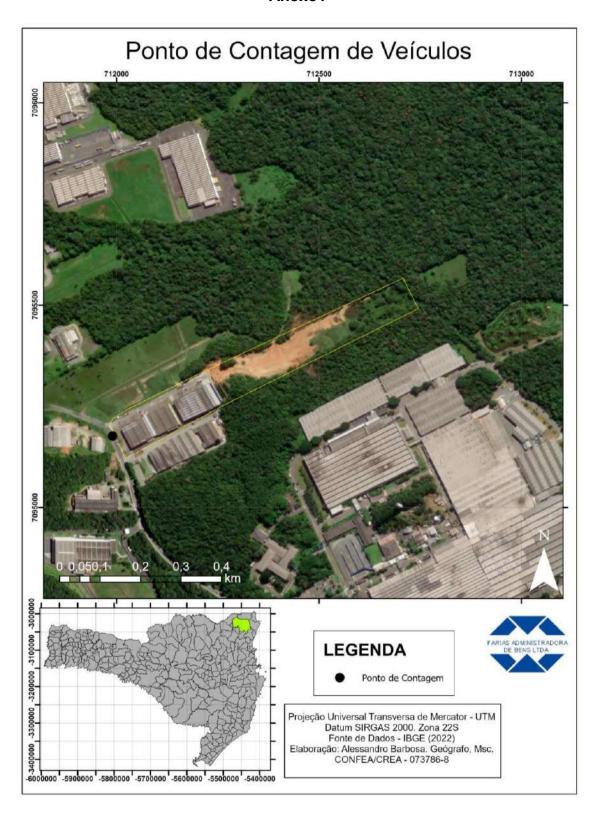

Seguindo a metodologia proposta por DNIT (2006), foram calculados os níveis de serviço para os dois sentidos do segmento em frente ao empreendimento, e considerados dois cenários distintos, antes da implantação do empreendimento e após a implantação. Obteve-se os resultados na Tabela 8, abaixo:

Tabela 8: Nível de Serviço do Empreendimento.

		Vp	VMV		Nível de
SENTIDO	CENÁRIO	(ucp/h)	(km/h)	PTGS	Serviço
Norte-Sul	Sem o Empreendimento	581	25,84	43,39	E
Norte-Sul	Com o Empreendimento	581	25,84	43,39	E
Sul-Norte	Sem o Empreendimento	581	25,84	43,39	E
Sul-Norte	Com o Empreendimento	581	25,84	43,39	E

Conforme Verificado, a Ampliação dos Galpões não irá impactar no Nível de Serviço existente no trecho estudado

Anexo1

