

MEMORIAL DESCRITIVO E DE CALCULO REFERENTE AO PROJETO DE DRENAGEM DE ÁGUAS PLUVIAIS PROPRIETÁRIO: WILSON PIMENTEL

JOINVILLE-SC MAIO DE 2020.

1. IDENTIFICAÇÃO DO EMPREENDIMENTO

• INFORMAÇÕES DO CONTRATANTE

PROPRIETÁRIO: WILSON PIMENTEL

CPF: 356.128.789-15

ENDEREÇO: SERVIDÃO JÚLIO SCHATZAMN S/N°, COMASA

MUNICÍPIO: JOINVILLE CEP: 89.228-102

RESPONSÁVEL TÉCNICO PELO PROJETO

RESPONSÁVEL TÉCNICO: ROGÉRIO DE OLIVEIRA

REGISTRO: CAU 41199-0

ENDEREÇO: RUA ARACAJU, Nº 1633, SANTO ANTONIO - JOINVILLE

TELEFONE: (47) 3423-0162

2. NORMAS TÉCNICAS DE REFERÊNCIA

O presente memorial de calculo descreve o projeto de drenagem de águas pluviais de uma edificação multifamiliar, localizada na cidade de Joinville.

- ABNT Associação Brasileira de Normas Técnicas;
- NBR 10844/89 Instalações prediais de águas pluviais;

3. DESCRIÇÃO DO PROJETO DE ÁGUAS PLUVIAIS

3.1. MEMORIAL DESCRITIVO

3.1.1. IDF EVAZÃO DE PROJETO

Para certa intensidade de chuva, constante e igualmente distribuída sobre uma bacia hidrográfica, a máxima vazão a ser verificada em uma seção, corresponde a uma duração de chuva igual ao "tempo de concentração da bacia", a partir da qual a vazão é constante. Assim, o dimensionamento das obras hidráulicas exige o conhecimento da relação entre a intensidade, a duração e a frequência da precipitação (Castro et al., 2011).

3.1.2. CALHAS

As calhas são dispositivas que captam as águas diretamente dos telhados impedindo que estas caíssem livremente causando danos as áreas circunvizinhas, principalmente quando a edificação é alta (Melo e Azevedo Netto, 1998).

Neste projeto foram dimensionados Foram dimensionadas 4 calhas feitas de aluminio, com funil de saída, seção retangular, sendo do tipo calha de água furtada

(cobertura i = 10%).

3.1.3. CONDUTORES VERTICAIS

Segundo a NBR 10844/89 os condutores verticais são tubulações verticais destinadas a recolher águas de calhas, coberturas, terraços e similares e conduzi-las até a parte inferior do edifício, então foram dimensionados condutores verticais com diâmetro

nominal de 100 mm e que foram colocadas internamente no edifício.

3.1.4. CONDUTORES HORIZONTAIS

Segundo a NBR 10844/89 os condutores horizontais são canais ou tubulações horizontais destinadas a recolher e conduzir águas pluviais até locais permitidos pelos dispositivos legais. Então foram dimensionados 11 condutores horizontais (seção circular) com diâmetro interno de 100 mm. A ligação entre os condutores verticais e horizontais deverá ser feita por joelho de 90°, com caixa de inspeção e de areia, estando

o condutor horizontal enterrado.

3.1.5. CAIXA DE INSPEÇÃO E DE AREIA

Sempre que houver uma mudança de direção em uma rede, quando localizada no terreno, haverá necessidade de colocação de uma caixa de inspeção com grelha, e quando há possibilidade da entrada de terra nas grelhas das caixas de inspeção, estas serão construídas de forma a reter a terra ou areia, impedindo o carreamento para dentro da tubulação, e por isto são chamadas de "caixa de areia" (Melo e Azevedo Netto, 1998). Foram previstas caixas de inspeção e de areia que poderão ser em alvenaria ou tubos de concreto 600mm, além de uma caixa de passagem, lembrando que serão locadas no pavimento térreo e serão encaminhadas para a galeria pluvial através dos

condutores horizontais.

3.2.MEMORIAL DE CÁLCULO

3.2.1. ÁREA DE CONTRIBUIÇÃO

No cálculo da área de contribuição, devem-se considerar os incrementos devidos à inclinação da cobertura e às paredes que interceptem água de chuva que também deva ser drenada pela cobertura. È importante lembrar que há área com inclinação de 10% e de 0,5% (laje). As superfícies encontradas são do tipo inclinado como mostrada na Figuras 1 e calculada pela fórmula que a segue:

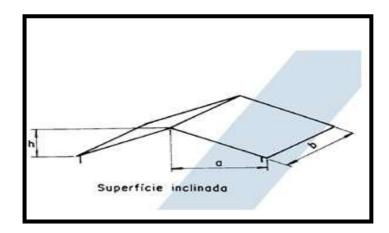


Figura 1 - Exemplo de superfície inclinada (Fonte: NBR 10844/89).

$$A = \left(a + \frac{h}{2}\right).b$$

Em que:

A =área inclinada (m^2)

 $\mathbf{b} = \text{largura} (m)$

 $\mathbf{a} = \text{base (m)}$

 $\mathbf{h} = \text{altura do telhado (m)}.$

Através do método foram obtidos os resultados listados na tabela a seguir:

Tabela 1 – Quadro de Áreas.

ESPECIFICAÇÃO	ÁREA (m²)
TQ - 1	48,48
TQ- 2	43,97
TQ- 3	46,67
TQ- 4	48,48
TOTAL	187,60

Área de contribuição encontrada é de 187,60 m².

3.2.2. IDF E VAZÃO DE PROJETO

Por falta de dados hidrológicos na cidade, adota-se a intensidade pluviométrica de São Francisco do Sul- SC de 167,00 mm/h. Utilizou-se o Método Racional para o calculo da vazão de projeto.

$$Q = \frac{I.A}{60}$$

Onde:

Q = Vazão de projeto (L/min);

I = intensidade pluviométrica (167,00 mm/h);

 $A = \text{área de contribuição (187,6 m}^2).$

Logo a Q encontrada foi de 522,15 L/min.

3.2.3. CALHAS

A largura de cada calha é dimensionada conforme o comprimento do telhado que é a medida da direção do escoamento, logo é necessário a observação da Tabela 3, já que cada comprimento do telhado corresponde a uma largura da calha.

Tabela 2 - Dimensões da calha em função do comprimento do telhado.(Fonte: Melo e Azevedo Netto, 1998).

COMPRIMENTO DO TELHADO (m)	LARGURA DA CALHA (m)
ATÉ 5	0,15
5 À 10	0,20
10 À 15	0,30
15 À 20	0,40
20 À 25	0,50
25 À 30	0,60

A tabela 3 descreve a distância da largura de cada área dimensionada de acordo com o comprimento do telhado.

Tabela 3 - Apresenta o resultado do dimensionamento da largura das 4 calhas.

ESPECIFICAÇÃO	COMPRIMENTO DO TELHADO (m)	LARGURA DA CALHA (m)
TQ - 1	9,10	0,20
TQ- 2	9,10	0,20
TQ- 3	11,34	0,20
TQ- 4	9,10	0,20

Então se considerou que a calha de 0,2 m de largura tem 0,015 m de altura d'água.

3.2.4. TUBOS DE QUEDA OU CONDUTORES VERTICAIS

O dimensionamento dos condutores verticais foi feito a partir dos seguintes dados:

Q = Vazão de projeto (L/min.);

L = comprimento do condutor ertical(m).

H = altura da lâmina de água na calha (mm);

Como a calha é com funil de saída utilizou-se o seguinte ábaco (Figura 2) mostrado na NBR 10844/89:

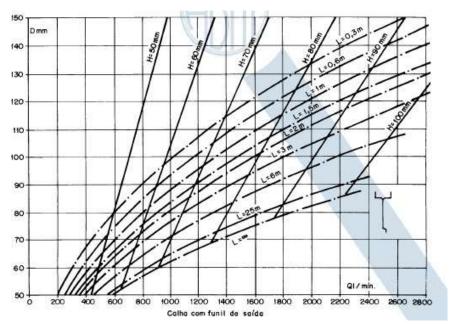


Figura 2 - Ábacos para determinar o diâmetro de condutores verticais (Fonte: NBR 10844/89).

A altura estimada do gabarito é de 15,12 metros, por tanto utilizaremos a L igual

25 metros, onde as vazões são caracterizadas com mínimas já que o diâmetro mínimo é 100 milímetros e todos os diâmetros encontrados são menores que o mesmo.

Tabela 4 - Dimensionamento de tubulações verticais

CALHAS	Q(L/min)	L (m)	H (mm)	D (mm)
TQ - 1	237,09	25	20	100
TQ- 2	237,09	25	20	100
TQ-3	237,09	25	20	100
TQ- 4	237,09	25	20	100

3.2.5. CONDUTORES HORIZONTAIS

Os condutores horizontais foram projetados com declividade de 1 a 2% com diâmetro mínimo de 100 milímetros, sendo o material de PVC. Onde toda água captada cai em um tubo de concreto(colarinho, que é conectado ao tubo da rede publica de coleta de águas pluviais de 600mm a uma proofundidade de 1,40m a baixo.

4. RESPONSÁVEL TÉCNICO

Resp. Técnico Rogério de Oliveira Arquiteto/Engenheiro Segurança CAU A64290-8